YES 0.99 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/FiniteMap.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule FiniteMap
  ((lookupFM :: FiniteMap Ordering a  ->  Ordering  ->  Maybe a) :: FiniteMap Ordering a  ->  Ordering  ->  Maybe a)

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b


  instance (Eq a, Eq b) => Eq (FiniteMap b a) where 

  lookupFM :: Ord a => FiniteMap a b  ->  a  ->  Maybe b
lookupFM EmptyFM key Nothing
lookupFM (Branch key elt _ fm_l fm_rkey_to_find 
 | key_to_find < key = 
lookupFM fm_l key_to_find
 | key_to_find > key = 
lookupFM fm_r key_to_find
 | otherwise = 
Just elt


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule FiniteMap
  ((lookupFM :: FiniteMap Ordering a  ->  Ordering  ->  Maybe a) :: FiniteMap Ordering a  ->  Ordering  ->  Maybe a)

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap b a = EmptyFM  | Branch b a Int (FiniteMap b a) (FiniteMap b a


  instance (Eq a, Eq b) => Eq (FiniteMap b a) where 

  lookupFM :: Ord a => FiniteMap a b  ->  a  ->  Maybe b
lookupFM EmptyFM key Nothing
lookupFM (Branch key elt vw fm_l fm_rkey_to_find 
 | key_to_find < key = 
lookupFM fm_l key_to_find
 | key_to_find > key = 
lookupFM fm_r key_to_find
 | otherwise = 
Just elt


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Cond Reductions:
The following Function with conditions
lookupFM EmptyFM key = Nothing
lookupFM (Branch key elt vw fm_l fm_rkey_to_find
 | key_to_find < key
 = lookupFM fm_l key_to_find
 | key_to_find > key
 = lookupFM fm_r key_to_find
 | otherwise
 = Just elt

is transformed to
lookupFM EmptyFM key = lookupFM4 EmptyFM key
lookupFM (Branch key elt vw fm_l fm_rkey_to_find = lookupFM3 (Branch key elt vw fm_l fm_rkey_to_find

lookupFM0 key elt vw fm_l fm_r key_to_find True = Just elt

lookupFM1 key elt vw fm_l fm_r key_to_find True = lookupFM fm_r key_to_find
lookupFM1 key elt vw fm_l fm_r key_to_find False = lookupFM0 key elt vw fm_l fm_r key_to_find otherwise

lookupFM2 key elt vw fm_l fm_r key_to_find True = lookupFM fm_l key_to_find
lookupFM2 key elt vw fm_l fm_r key_to_find False = lookupFM1 key elt vw fm_l fm_r key_to_find (key_to_find > key)

lookupFM3 (Branch key elt vw fm_l fm_rkey_to_find = lookupFM2 key elt vw fm_l fm_r key_to_find (key_to_find < key)

lookupFM4 EmptyFM key = Nothing
lookupFM4 wv ww = lookupFM3 wv ww

The following Function with conditions
compare x y
 | x == y
 = EQ
 | x <= y
 = LT
 | otherwise
 = GT

is transformed to
compare x y = compare3 x y

compare0 x y True = GT

compare2 x y True = EQ
compare2 x y False = compare1 x y (x <= y)

compare1 x y True = LT
compare1 x y False = compare0 x y otherwise

compare3 x y = compare2 x y (x == y)

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ Narrow

mainModule FiniteMap
  (lookupFM :: FiniteMap Ordering a  ->  Ordering  ->  Maybe a)

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b


  instance (Eq a, Eq b) => Eq (FiniteMap b a) where 

  lookupFM :: Ord b => FiniteMap b a  ->  b  ->  Maybe a
lookupFM EmptyFM key lookupFM4 EmptyFM key
lookupFM (Branch key elt vw fm_l fm_rkey_to_find lookupFM3 (Branch key elt vw fm_l fm_r) key_to_find

  
lookupFM0 key elt vw fm_l fm_r key_to_find True Just elt

  
lookupFM1 key elt vw fm_l fm_r key_to_find True lookupFM fm_r key_to_find
lookupFM1 key elt vw fm_l fm_r key_to_find False lookupFM0 key elt vw fm_l fm_r key_to_find otherwise

  
lookupFM2 key elt vw fm_l fm_r key_to_find True lookupFM fm_l key_to_find
lookupFM2 key elt vw fm_l fm_r key_to_find False lookupFM1 key elt vw fm_l fm_r key_to_find (key_to_find > key)

  
lookupFM3 (Branch key elt vw fm_l fm_rkey_to_find lookupFM2 key elt vw fm_l fm_r key_to_find (key_to_find < key)

  
lookupFM4 EmptyFM key Nothing
lookupFM4 wv ww lookupFM3 wv ww


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_lookupFM(Branch(GT, wx31, wx32, wx33, wx34), LT, h) → new_lookupFM(wx33, LT, h)
new_lookupFM(Branch(LT, wx31, wx32, wx33, wx34), GT, h) → new_lookupFM(wx34, GT, h)
new_lookupFM(Branch(EQ, wx31, wx32, wx33, wx34), GT, h) → new_lookupFM(wx34, GT, h)
new_lookupFM(Branch(GT, wx31, wx32, wx33, wx34), EQ, h) → new_lookupFM(wx33, EQ, h)
new_lookupFM(Branch(LT, wx31, wx32, wx33, wx34), EQ, h) → new_lookupFM(wx34, EQ, h)
new_lookupFM(Branch(EQ, wx31, wx32, wx33, wx34), LT, h) → new_lookupFM(wx33, LT, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_lookupFM(Branch(GT, wx31, wx32, wx33, wx34), EQ, h) → new_lookupFM(wx33, EQ, h)
new_lookupFM(Branch(LT, wx31, wx32, wx33, wx34), EQ, h) → new_lookupFM(wx34, EQ, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_lookupFM(Branch(LT, wx31, wx32, wx33, wx34), GT, h) → new_lookupFM(wx34, GT, h)
new_lookupFM(Branch(EQ, wx31, wx32, wx33, wx34), GT, h) → new_lookupFM(wx34, GT, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_lookupFM(Branch(GT, wx31, wx32, wx33, wx34), LT, h) → new_lookupFM(wx33, LT, h)
new_lookupFM(Branch(EQ, wx31, wx32, wx33, wx34), LT, h) → new_lookupFM(wx33, LT, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: